

Low-rank tensor uniformization for tumor progression modeling

Peter Georg	Lars Grasedyck	Maren Klever	Rudolf Schill
	Rainer Spang	Tilo Wettig	

Institut für Geometrie und Praktische Mathemaik, RWTH Aachen University

Inspired by current research in tumor progression modeling, we consider continuous-time Markov chains that describe interacting processes. In general a Markov chain is defined by its state space S, its initial probability distribution $\mathbf{p}(0) \in \mathbb{R}^S$ and its transition rate matrix $\mathbf{Q} \in \mathbb{R}^{S \times S}$. In tumor progression models, a tumor is identified by its genotype where d mutations may have occurred or not. The Markov chain starts with the absence of all mutations and then gradually accumulates mutations. Its state space S describes the set of possible tumors and thus, grows exponentially in the number of mutations d with $|S| = 2^d$. Modeling the transition rate matrix \mathbf{Q} leads to an optimization problem based on given tumor data. Since the age of a tumor at its diagnosis is typically unknown, this optimization requires the so-called *time-marginal distribution* $\mathbf{p} \in \mathbb{R}^S$ which is defined as

$$\mathbf{p} := \int_{0}^{\infty} \exp(-t) \cdot \exp(\mathbf{Q}t) \mathbf{p}(0) \, \mathrm{d}t \qquad \text{where} \quad t \sim \mathrm{Exp}[1].$$

The time-marginal distribution is obtained as the solution of the linear system

$$(\mathbf{Id} - \mathbf{Q})\mathbf{p} = \mathbf{p}(0). \tag{1}$$

However, the size of this system renders classical solvers infeasible.

In this talk, we introduce the concept of *Mutual Hazard Networks* [3] which allows for a low-rank tensor representation of the transition rate matrix \mathbf{Q} . Using low-rank tensor techniques reduces the computational complexity from exponential to linear provided the distribution \mathbf{p} exhibits a low-rank structure. Previously known iterative methods also allow for low-rank approximations of the solution for (1) but are unable to guarantee that its entries sum up to one, i.e,

$$\sum_{x \in S} \mathbf{p}_x = 1,\tag{2}$$

as required for a probability distribution. We present a convergent iterative method based on the concept of uniformization [2]. This strategy allows us to use low-rank tensor formats and, at the same time, to satisfy condition (2). Numerical experiments illustrate that the time-marginal distribution is well approximated with low rank.

References

- P. Georg, L. Grasedyck, M. Klever, R. Schill, R. Spang, T. Wettig, Low-rank tensor methods for Markov chains with applications to tumor progression models, arXiv:2006.08135, (2020).
- [2] W. K. Grassmann, Transient solutions in markovian queueing systems, Computers & Operations Research, (1977), pp. 47-53.
- [3] R. Schill, S. Solbrig, T. Wettig, R. Spang, Modelling cancer progression using Mutual Hazard Networks, Bioinformatics, (2019), pp. 241-249.