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In this study, we consider the minimal positive solution of the following system of the
multi-variable nonlinear matrix equations that can be expressed in the form
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where Xi ∈ Rp×p are unknown matrices, Ai,j ∈ Rp×p for i = 1, 2, . . . , n and j = 0, 1, . . . , n.
We give the following assumptions on the coefficient matrices of the system (1):

For i = 1, 2, . . . , n and j = 2, 3, . . . , n,

Ai,j is a positive matrix or a nonnegative irreducible matrix,

−Ai,1 is nonsingular M -matrix,

Ai,0 is a positive matrix.

For j = 0, 1, . . . , n, set the coefficient matrices Aj , unknown matrix Y and the permutation
matrix P , then the system (1) can be equivalently reformulated as

F (Y ) = AnY
n + An−1P

>Y n−1P + · · ·+ A1(P
>)n−1Y Pn−1 + A0

=

n∑
j=0

Aj(P
>)n−jY jPn−j = 0.

(2)

Newton’s iteration for solving equation (2) can be stated as
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i = 1, 2, . . .
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Note that the matrices in equation (3) is of size np × np, which implies that the
computation cost of the classical Newton’s iteration is expensive if n and p are large. To
reduce the computation cost, we propose the modified Newton’s iteration as follows:
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Set Xj,0 = 0 for j = 1, 2, . . . , n, we prove that the sequences {Xj,i} generated by (4)
converge to the minimal positive solution of system (1). And some numerical experiments
are given to show the efficiency of the modified Newton’s iteration in calculation time and
memory.
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