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In this talk we explore the problem of recovering a tensor A ∈ Rn1×...×nd with low
tensor train ranks r = (1, r1, . . . , rd−1, 1) from a small portion of its entries indexed by
Ω ⊂ [n1]× . . .× [nd]:

‖RΩX−RΩA‖2F → min s.t. X ∈ Rn1×...×nd , rkTT (X) = r.

By RΩ we denote the sampling operator that sets to zero all entries that are not in Ω.
In the matrix case one knows how many entries Ω ⊂ [n1]× [n2] are needed to complete

an incoherent low-rank matrix, albeit in the nuclear-norm-minimization formulation:

‖X‖∗ → min s.t. X ∈ Rn1×n2 , RΩX = RΩA.

Namely, if Ω is chosen uniformly at random with replacement then

O
(
r(n1 + n2) log2(n1 + n2)

)
entries are sufficient to recover a matrix with high probability [1]. Fewer elements [2]

O (r(n1 + n2) log(n1 + n2))

guarantee local convergence of the Riemannian gradient descent applied to

‖RΩX −RΩA‖2F → min s.t. X ∈Mr = {X ∈ Rn1×n2 : rk(X) = r}.

The method exploits the geometric structure of the set Mr, which is an embedded
submanifold of Rn1×n2 .

For tensor trains the problem is less understood (there is progress in the Tucker
case [3, 4]). We follow the geometric route and establish local convergence guarantees—
in terms of the sample size |Ω|—of the Riemannian gradient descent for tensor train
completion:

‖RΩX−RΩA‖2F → min s.t. X ∈Mr = {X ∈ Rn1×...×nd : rkTT (X) = r}.



To this we end we extend the notion of incoherence from matrices (their column and row
subspaces) to tensor trains.

We then consider tensor completion with side information. In this problem, we are
additionally given low-dimensional subspaces that contain the mode-k fiber spans of the
tensor. The presence of side information makes it possible to significantly lower the number
of entries sufficient for matrix completion in the nuclear norm formulation [5, 6]. We obtain
similar reduction in the tensor train case.
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