

A distance formula for tuples of doubly commuting matrices

Priyanka Grover Sushil Singla

Department of Mathematics, Shiv Nadar University, Delhi NCR, India.

For a tuple of operators $\boldsymbol{A} = (A_1, \ldots, A_d)$, dist $(\boldsymbol{A}, \mathbb{C}^d \boldsymbol{I})$ is defined as $\min_{\boldsymbol{z} \in \mathbb{C}^d} \|\boldsymbol{A} - \boldsymbol{z} \boldsymbol{I}\|$ and $\operatorname{var}_x(\boldsymbol{A})$ as $\|\boldsymbol{A} x\|^2 - \sum_{j=1}^d |\langle x|A_j x \rangle|^2$. Ming [3] showed that if \boldsymbol{A} is a tuple of commuting normal operators on a Hilbert space \mathcal{H} , then

$$\sup_{\|\boldsymbol{x}\|=1} \operatorname{var}(\boldsymbol{A}) = R_{\boldsymbol{A}}^2, \tag{1}$$

where $R_{\mathbf{A}}$ is the radius of the smallest disc containing the Taylor spectrum of \mathbf{A} . We have $R_{\mathbf{A}} = \operatorname{dist}(\mathbf{A}, \mathbb{C}^d \mathbf{I}).$

We will state the idea of the proof of the following. For tuples of doubly commuting matrices, we have

$$\operatorname{dist}(\boldsymbol{A}, \mathbb{C}^{d} \boldsymbol{I})^{2} = \sup_{\|\boldsymbol{x}\|=1} \operatorname{var}_{\boldsymbol{x}}(\boldsymbol{A}).$$

The main facts we will use for the proof will be the normal form for a collection of doubly commuting matrices proved in the main theorem of [1] and the idea of the proof of Proposition 4 of [2].

References

- V. Bolotnikov, L. Rodman, Normal forms and joint numerical ranges of doubly commuting matrices, Linear Algebra Appl. 301 (1999) 187–194.
- [2] A. T. Dash, Tensor products and joint numerical range, Proc. Amer. Math. Soc. 40 (1973) 521–526.
- [3] F. Ming, Garske's inequality for an n-tuple of operators, Integral Equations Operator Theory 14 (1991), 787–793.