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Low-rank matrices and tensors are ubiquitous in science. A lot of methods have been
developed using low-rank structures in computational mathematics [1], computational
fluid dynamics [2], movie preferences [3] and automated machine learning [4]. To date,
most of the methods have been developed to build effective low-rank approximations in
the Frobenius norm. In the matrix case, the quality of such approximations depends
on the decrease rate of the singular values of the matrix. However, recent results show
that low-rank approximations of matrices in other norms can be effective even without
decreasing singular values. One fundamental result was proved in [5]:

Theorem. Let X ∈ Rm×n with m ≥ n and 0 < ε < 1. Then, with

r = d72 log (2n+ 1)/ε2e (1)

we have
inf

rankY≤r
‖X − Y ‖C ≤ ε‖X‖2, where ‖X‖C = max

i,j
|Xij | (2)

This work is devoted to low-rank approximations in the Chebyshev, that is, elementwise
norm (2). For simplicity of presentation, the results are given in the matrix case, although
some of them can be generalized to tensors. Let a matrix A ∈ Rm×n be given. We call

µ = inf
U∈Rm×r,V ∈Rn×r

∥∥A− UV T
∥∥
C
, (3)

the value of the best Chebyshev approximation of rank r. To date, the problem of
constructing low-rank approximations in the Chebyshev norm has been little studied. One
of the few works devoted to this topic is [6], in which a method for finding local minima
for rank 1 approximations has been proposed. The authors construct an approximation
using the alternance method. Let U (0) be given. In the case of rank 1, it is easy to find a
matrix (in fact, a vector) V (0), being the solution of the problem

µ = min
V ∈Rn×r

∥∥∥A− U (0)V T
∥∥∥
C

(4)



Then the authors find the matrix (vector) U (1) that is optimal for V (0) and repeat the
procedure.

The results presented in [6] can be generalized to the case of an arbitrary rank. The
key step here is the possibility of solving the problem of the form (4), which becomes
challenging for r > 1. This problem can be reduced to solving several independent problems
of the form

µ = inf
v∈Rr
‖a− Uv‖∞ , a ∈ Rm, U ∈ Rm×r (5)

Suppose that in the matrix U ∈ Rm×r all submatrices of size r× r are non-singular. Let Ik
be a subset of k indices from 1 to m, Ik = {i1, i2, . . . , ik}. Let us denote aIk the subvector
of the vector a with elements from Ik, and UIk the submatrix of the matrix U with rows
from Ik. It can be shown that there exists a subset Ir+1 of r + 1 indices such that the
solution of the problem

µ̂ = inf
v∈Rr

∥∥aIr+1 − UIr+1v
∥∥
∞ (6)

coincides with the solution of the problem (5). Such a subset Ir+1 is called characteristic.
The problem of size r + 1 can be solved exactly in O(r4) operations ([7]). The above
arguments allow us to find the optimal solution to the problem (5) (and therefore (4))
by iterating over all subsets of r + 1 indices. However, more efficient methods for finding
the characteristic set and solving the problem (4) can also be constructed based on
generalizations of the Remez algorithm. Such algorithm does not require iterating over all
subsets and in practice work in polynomial time.
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