Matroid endomorphisms, derivatives, and Kolchin polynomials

Antongiulio Fornasiero antongiulio.fornasiero@gmail.com Università di Firenze

Pisa, 2022

Notes

The Kolchin polynomial is defined in
E. Kolchin. Differential algebra and algebraic groups. Pure and Applied Mathematics, vol. 54, Academic Press, New York- London, 1973.
The multi-variate Kolchin polynomial for a tuple of derivations and field endomorphisms is in
A.B. Levin. Multivariable difference dimension polynomials. Sovrem. Mat. Prilozh. (2004), no. 14, Algebra, 48-70.

Introduction

- \mathbb{K} field
- $\bar{\delta}=\left(\delta_{1}, \ldots, \delta_{k}\right)$ tuple of commuting derivations on K.
- Kolchin polynomial: a numerical polynomial , measuring the "growth rate" of $\bar{\delta}$.
- A multi-variate version of the same polynomial is also known.

We can abstract from the setting of fields with derivations, and consider instead a matroid with a tuple $\bar{\delta}$ of commuting (quasi)-endomorphisms. In this setting too there exists a (multi-variate) Kolchin polynomial measuring the growth rate of $\bar{\delta}$.
We can then consider the situation of an o-minimal structure K with a generic tuple $\bar{\delta}$ of commuting compatible derivations, and use the corresponding Kolchin polynomial to give a bound to the thorn rank of $(K ; \bar{\delta})$.

Joint work with E. Kaplan.
A. Fornasiero (Università di Firenze)

Contents

MatroidsMatroid endomorphismsGrowth rateModel theory
Matroids

A finitary matroid (or pregeometry) is given by:

- X set,
- c $\ell: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ operator;
such that $\mathrm{c} \ell$ is a closure operator:
- $A \subseteq B \Rightarrow c \ell(A) \subseteq c \ell(B)$,
- $A \subseteq c \ell(A)$,
- $c \ell(c \ell(A))=c \ell(A)$;
it satisfies the exchange property:

$$
\text { - } a \in c \ell(B c) \backslash c \ell(B) \Rightarrow c \in c \ell(B a) ;
$$

it is finitary

- $a \in c \ell(B) \Rightarrow \exists B^{\prime} \subseteq B\left(a \in c \ell\left(B^{\prime}\right) \& B^{\prime}\right.$ finite $)$.

Matroids
Independent sets, basis, rank, ...
($X, \mathrm{c} \ell$) matroid, $A \subseteq X$.

- A is independent if, for all $b \in A, b \notin c \ell(A \backslash b)$.
- A basis of A is a maximal independent subset of A.
- The rank $r(A)$ of A is the cardinality of a basis of A (it does not depend on the choice of the basis).
- A is independent over C if, for all $b \in A, b \notin c \ell(A C \backslash b)$.
- A basis of A over C is a subset of A maximal among sets independent over C.
- The relative rank $r(A \mid C)$ is the cardinality of a basis of A over C

$$
a \in c \ell(B) \Leftrightarrow r(a \mid B)=0
$$

Examples

- X set, $c \ell(A)=A$;
- X vector space, $c \ell(A)=\operatorname{span}(A)$;
- X field, $\mathrm{c} \ell=$ (field theoretic) algebraic closure;
- X geometric structure, $c \ell=$ (model theoretic) algebraic closure .

Matroids

Examples

X	$c \ell(A)$	basis of A	$r(A)$
set	A	A	$\|A\|$
vector space			
field			
geometric structure	span (A) algebraic closure algebraic closure	linear basis	$\operatorname{dim}(A)$

Matroid endomorphisms

Endomorphisms

($X, \mathrm{c} \ell$) matroid.

Definition

An endomorphism is a map $\phi: X \rightarrow X$ such that:

$$
a \in c \ell(B) \Rightarrow \phi a \in c \ell(\Phi B) .
$$

Equivalently

$$
r(\phi A \mid \phi B) \leq r(A \mid B) .
$$

Matroid endomorphisms

Examples

matroid	endomorphism
set	any map
vector space	linear map
field	field automorphism
geometric structure	bijection preserving the structure

Notes

Matroid endomorphisms are sometimes called strong maps

Growth rate

Unavariate polynomial
($X, \mathrm{c} \ell$) finitary matroid.
$\delta=\left(\delta_{1}, \ldots, \delta_{k}\right)$ commuting endomorphisms
$A \subset X$ finite.

Definition

$F_{A}(n)=r\left(\bar{\delta}^{\bar{s}} A:|\bar{s}|=n\right)$.

Theorem

There exists a polynomial $q=q_{A} \in \mathbb{Q}[t]$ of degree at most $k-1$, such that, for every $n \gg 0$,

$$
F_{A}(n)=q_{A}(n)
$$

A. Fornasiero (Università di Firenze)

Growth rate

Multivariate polynomial
($X, \mathrm{c} \ell$) finitary matroid.
$\bar{\delta}=\left(\bar{\delta}_{1}, \ldots, \bar{\delta}_{k}\right)$ commuting tuples of endomorphisms of length ℓ_{i}.
$A \subset X$ finite.

Definition

$F_{A}(\bar{n})=r\left(\bar{\delta}_{1}^{\bar{s}_{1}} \cdots \bar{\delta}_{k}^{\bar{s}_{k}} A:\left|\bar{s}_{1}\right|=n_{1}, \ldots,\left|\bar{s}_{k}\right|=n_{k}\right)$.

Theorem

There exists a polynomial $q=q_{A} \in \mathbb{Q}[\bar{t}]$, of degree at most $\ell_{i}-1$ in t_{i}, such that, for every $\bar{n} \gg 0$,

$$
F_{A}\left(n_{1}, \ldots, n_{k}\right)=q_{A}\left(n_{1}, \ldots, n_{k}\right)
$$

A. Fornasiero (Università di Firenze)

Example

Hilbert polynomial

If X is a vector space, the polynomial q_{A} is the (multi-variate) Hilbert polynomial.

Growth rate

Triangular systems

Definition

A triangular system is a tuple of commuting maps $\delta_{i}: X \rightarrow X$ such that, for every n,

$$
r\left(\delta_{n} A \mid \delta_{<n} A \delta_{\leq n} B\right) \leq r(A \mid B)
$$

Equivalently: $a \in c \ell(B) \Rightarrow \delta_{n} a \in c \ell\left(\delta_{<n} a \delta_{\leq n} B\right)$
$\bar{\delta}=\left(\bar{\delta}_{1}, \ldots, \bar{\delta}_{k}\right)$ commuting triangular systems of length ℓ_{i}.
$A \subset X$ finite.
$F_{A}(\bar{n})=r\left(\bar{\delta}_{1}^{\bar{r}_{1}} \cdots \bar{\delta}_{k}^{\bar{r}_{k}} A:\left|\bar{r}_{1}\right|=n_{1}, \ldots,\left|\bar{r}_{k}\right|=n_{k}\right)$.

Theorem

There exists a polynomial $q=q_{A} \in \mathbb{Q}[\bar{t}]$, of degree at most $\ell_{i}-1$ in t_{i}, such that, for every $\bar{n} \gg 0$,

$$
F_{A}\left(n_{1}, \ldots, n_{k}\right)=q_{A}\left(n_{1}, \ldots, n_{k}\right)
$$

Growth rate

Quasi-endomorphisms

A quasi-endomorphism is a map $\delta: X \rightarrow X$ such that $(i d, \delta)$ is a triangular system:

$$
r(\delta A \mid A B \delta B) \leq r(A \mid B) .
$$

Equivalenyly: $a \in c \ell(B) \Rightarrow \delta a \in c \ell(B \delta B)$
$\bar{\delta}=\left(\bar{\delta}_{1}, \ldots, \bar{\delta}_{k}\right)$ commuting tuples of quasi-endomorphisms of length ℓ_{i}.
$A \subset X$ finite.

Definition

$$
G_{A}(\bar{n})=r\left(\bar{\delta}_{1}^{\bar{s}_{1}} \cdots \bar{\delta}_{k}^{\bar{s}_{k}} A:\left|\bar{s}_{1}\right| \leq n_{1}, \ldots,\left|\bar{s}_{k}\right| \leq n_{k}\right) .
$$

Corollary

There exists a polynomial $p_{A} \in \mathbb{Q}[\bar{t}]$, of degree at most ℓ_{i} in t_{i}, such that, for every $\bar{n} \gg 0$,
$G_{A}\left(n_{1}, \ldots, n_{k}\right)=p_{A}\left(n_{1}, \ldots, n_{k}\right)$
A. Formasiero (Universita di Firenze)

Example

Kolchin polynomial

If K is a field, any derivation (and any field automorphism) on K is a quasi-endomorphism. The corresponding polynomial p_{A} is the (multi-variate) Kolchin polynomial.

$$
p_{A}(\bar{n})=r\left(\bar{\delta}_{1}^{\bar{s}_{1}} \cdots \bar{\delta}_{k}^{\bar{s}_{k}} A:\left|\bar{s}_{1}\right| \leq n_{1}, \ldots,\left|\bar{s}_{k}\right| \leq n_{k}\right), \quad \bar{n} \gg 0
$$

Invariants

$\bar{\delta}=\left(\delta_{1}, \ldots, \delta_{k}\right)$ commuting quasi-endomorphisms.
$A \subset X$ finite.

$$
\bar{\delta}^{\infty} A:=\left(\bar{\delta}^{\bar{s}} A: \bar{s} \in \mathbb{N}^{k}\right)
$$

The leading term of p_{A} (univariate polynomial) does not depend on A : if

$$
\bar{\delta}^{\infty} A=\bar{\delta}^{\infty} A^{\prime}
$$

then p_{A} and $p_{A^{\prime}}$ have the same leading monomial

Lemma

Let $r^{\bar{\delta}}(A)$ be the coefficient of p_{A} of degree k. Then, up to a multiplicative constant, $r^{\bar{\delta}}$ is the rank of a matroid on X.

$$
a \in c \ell^{\bar{\delta}}(B) \Leftrightarrow \bar{\delta}^{\infty} \text { a is not } c \ell \text {-independent over } B
$$

Model theory

Independence relation

\mathbb{K} geometric structure (e.g., $\mathbb{K} \models A C F$ or \mathbb{K} o-minimal): the model-theoretic algebraic closure acl is a matroid.

Definition

$1^{a c l}$ is the independence relation induced by the algebraic closure:

$$
A \underset{B}{\stackrel{1}{c l}_{\text {cl }}} C
$$

if every $A^{\prime} \subseteq A$ which is algebraically independent over B remains algebraically independent over $B C$. Define

$$
A \underset{B}{\unrhd^{\delta}} C \quad \Leftrightarrow \quad \bar{\delta}^{\infty} A \underset{\bar{\delta}^{\infty} B}{{\underset{D}{c l}}_{\text {ac }} \bar{\delta}^{\infty} C}
$$

Lemma

If $(\mathbb{K}, \bar{\delta})$ is "nice", then \mathscr{L}^{δ} is a "strict" independence relation.

Thorn forking

Fact (H. Adler)

If \perp is any strict independence relation, then $A \perp_{C} B$ implies $A \perp_{C} B$.

Corollary

The foundation rank of \downarrow is greater or equal than the thorn rank.

Remark
 If $(K, \bar{\delta})$ is nice, then the foundation rank of \mathscr{L}^{δ} is ω^{k}.

Corollary

$(K, \bar{\delta})$ is super-rosy of rank ω^{k}.
A. Fornasiero (Università di Firenze)

Model theory

Thorn and delta rank
Question
$\mathbb{L}^{\mathbb{L}}=\mathbb{L}^{\boldsymbol{E}}$?

Fact (H. Adler)

If \perp is a "canonical" independence relation, then $\perp=\mathbb{I}^{p}$

Remark

If $\mathbb{L}^{\text {d }}$ is canonical, then $\unrhd^{\mathbb{E}}$ is canonical.

Example

If $\mathbb{K} \models R C F$, then $⺊^{\text {ac }}$ is canonical.
[Loveys-Peterzil] There exist $\mathbb{K} 0$-minimal such that ${ }^{\text {dd }}$ is not canonical.

Notes

We assume that \mathbb{K} and ($\mathbb{K}, \bar{\delta}$) have geometric elimination of imaginaries. The results are from H. Adler's PhD thesis.

Notes

(in J. Lovey, Y. Peterzil. Linear o-minimal structures. Israel J. of Mathematics, 81:1-30, 1993.

