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Introduction

o Kfield
Matroid endomorphisms, derivatives, and Kolchin polynomials © 6= (61.....6k) tuple of commuting derivations on K.
o Kolchin polynomial: a numerical polynomial , measuring the "growth rate" of 6.

- . o A multi-variate version of the same polynomial is also known.
Antongiulio Fornasiero

antongiulio. fornasiero@gmail.com We can_abstract from the settling of fields V\{ith derivations, e}nd consider ingtead a materId. with
a tuple ¢ of commuting (quasi)-endomorphisms. In this setting too there exists a (multi-variate)
Universita di Firenze Kolchin polynomial measuring the growth rate of 6. B
We can then consider the situation of an o-minimal structure K with a generic tuple ¢ of
Pisa, 2022 commuting compatible derivations, and use the corresponding Kolchin polynomial to give a

bound to the thorn rank of (K 6).

Joint work with E. Kaplan.
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Nores

The Kolchin polynomial is defined in Contents

¥ E. Kolchin. Differential algebra and algebraic groups. Pure and Applied Mathematics, vol.
54, Academic Press, New York- London, 1973.

The multi-variate Kolchin polynomial for a tuple of derivations and field endomorphisms is in @ Matroids

@ A.B. Levin. Multivariable difference dimension polynomials. Sovrem. Mat. Prilozh. (2004),

no. 14, Algebra, 48-70. . .
9 @ Matroid endomorphisms

@ Growth rate

@ Model theory
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Matroids Examples
A finitary matroid (or pregeometry) is given by:
o X set,
o cf: P(X) - P(X) operator;
such that cf is a closure operator: o Xset, cl(A) =A;
0 ACB=cl(A)ccl(B), o X vector space, c{(A) = span(A);
o AcCcl(A), o X field, c£ = (field theoretic) algebraic closure;
o cl(ct(A)) =ct(A); o X geometric structure, cf = (model theoretic) algebraic closure.

it satisfies the exchange property:
0 aecl(Be)\cf(B) = c e cl(Ba);
it is finitary
0 aecl(B)y=3IB'CB (a € ct(B’) & B’ finite )
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S =
Independent sets, basis, rank, ... Examples
(X, cf) matroid, A C X.

o Aisindependentif, forallb € A, b ¢ cf{(A\b).
o A basis of A is a maximal independent subset of A.

_ _, _ , , X | cl(A) basis of A r(A)
o The rank r(A) of A is the cardinality of a basis of A (it does not depend on the choice of
the basis). set A A A
vector space span(A) linear basis dim(A)
o . field algebraic closure transcendence basis transcendence degree
o Aisindependent over C if, forall b € A, b ¢ c{(AC \ b). geometric structure | algebraic closure
o A basis of A over C is a subset of A maximal among sets independent over C.
o The relative rank r(A | C) is the cardinality of a basis of A over C

aecl(B) o r(alB)=0
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Notes
Endomorphisms

Matroid endomorphisms are sometimes called strong maps

(X, c€) matroid.

Definition
An endomorphism is a map ¢ : X — X such that:

a e cl(B) = ¢a € ct(PB).

Equivalently:
r(¢A | ¢B) < r(A | B).
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Matroid endomorphisms Growth rate

Examples Growth rate

Unavariate polynomial

(X, c£) finitary matroid.
6 = (1,...,0k) commuting endomorphisms.
A C X finite.

Definition

matroid | endomorphism

set | any map
vector space | linear map =5 _
. ) . Fa(n) = r(6°A : |s| = n).
field | field automorphism a(n) ( 81 )
geometric structure | bijection preserving the structure

Theorem

There exists a polynomial g = ga € Q[t] of degree at most k — 1, such that, for every n > 0,

Fa(n) = qa(n)

A. Fornasiero (Universita di Firenze) Kolchin polynomials

A. Fornasiero (Universita di Firenze) Kolchin polynomials



Growth rate Example
Multivariate polynomial Hilbert polynomial
(X, ct) finitary matroid.
6 = (61, ...,0k) commuting tuples of endomorphisms of length ¢;.
A c X finite.
Definition
Fa(f) = r(5f1 -~~5ikA Bl = e, 8kl = k). If X is a vector space, the polynomial qa is the (multi-variate) Hilbert polynomial.
y
Theorem
There exists a polynomial q = qa € Q[t], of degree at most ¢; — 1 in t;, such that, for every
n>0,
FA(n1,...,nk):qA(m,...,nk) )
T
Triangular systems Quasi-endomorphisms
Definition A quasi-endomorphism is a map 6 : X — X such that (id, ¢) is a triangular system:

A triangular system is a tuple of commuting maps 6; : X — X such that, for every n, r(6A| ABGSB) < r(A|B).

r(6nA | 6<nA 6<nB) < (A | B) Equivalenyly: a € c£(B) = da € ct(BsB)

Equivalently: a € c£(B) = 6na € cl(S-na 6-1B) Z:C ()((51{".“.@,.5,() commuting tuples of quasi-endomorphisms of length ¢;.
6 = (61,...,0k) commuting triangular systems of length ;. Definition
lfiA?ﬁ?inlrt(eé?-..(_Sz(A SRl =0y, TRl = k). Ga(R) = r(85 -+ A < 511 < ... I8l < ). J
Theorem Corollary
Ther g exists a polynomial q = qa € Q[t], of degree at most ¢; — 1 in t;, such that, for every There exists a polynomial pa € Q[t], of degree at most ¢; in t;, such that, for every i > 0,
n>o0,

FA(n1,...,nk):qA(m,...,nk) GA(n1,...,nk):pA(n1,...,nk) )
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Example Invariants

Kolchin polynomial 6 = (1,...,0k) commuting quasi-endomorphisms.

A c X finite.

5%A = (5°A : s e NK)

If K is a field, any derivation (and any field automorphism) on K is a quasi-endomorphism. The leading term of pa (univariate polynomial) does not depend on A: if
The corresponding polynomial pa is the (multi-variate) Kolchin polynomial.

0CA = 6%A’
pa(i) = (53 - 5FA Bl <ng,.. &l <), >0 then pa and pas have the same leading monomial.
Lemma
Let (A) be the coefficient of pa of degree k. Then, up to a multiplicative constant, r is the
rank of a matroid on X.
aecl’(B) & & a is not cl-independent over B
Fields with generic derivations Independence relation

K geometric structure (e.g., K = ACF or K o-minimal): the model-theoretic algebraic closure
acl is a matroid.

K a structure expanding a field Definition

6 = (1,...,0k) commuting derivations.

[*is the independence relation induced by the algebraic closure:
Assume that (K, ) is “nice”.

A [fc
Example B
o (K,d) = DCF¥

0 if every A’ C A which is algebraically independent over B remains algebraically independent
o K o-minimal, 6 generic tuple of commuting compatible derivations.

over BC. Define

=

- , AlC & 0%A [96*C
We can endow (K, 6) with an independence relation |, and compute its foundation rank. LB 5:!’5

Lemma

If (K, 0) is “nice”, then [’ is a “strict” independence relation.
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Model theory

Thorn forking

Fact (H. Adler)
If | is any strict independence relation, then A | . B implies A’ PP G B.

Corollary
The foundation rank of | is greater or equal than the thorn rank.

Remark

If (K, 6) is nice, then the foundation rank of [’ is wX.

Corollary

(K, &) is super-rosy of rank w.
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Model theory

Thorn and delta rank

Question

P=t7
N— N—

Fact (H. Adler)
If | is a “canonical” independence relation, then | = P

Remark
If [*is canonical, then [’ is canonical.

Example

If K = RCF, then [*'is canonical.
[Loveys-Peterzil] There exist K o-minimal such that [*"is not canonical.
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NotEes

We assume that K and (K, §) have geometric elimination of imaginaries.
The results are from H. Adler’s PhD thesis.

NotEes

M J Lovey, Y. Peterzil. Linear o-minimal structures. Israel J. of Mathematics, 81:1-30, 1993.
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