Matroid endomorphisms, derivatives, and Kolchin polynomials

Antongiulio Fornasiero antongiulio.fornasiero@gmail.com

Università di Firenze

Pisa, 2022

A. Fornasiero (Università di Firenze)

Kolchin polynomials

Pisa 2022

Introduction

Introduction

- K field
- $\bar{\delta} = (\delta_1, \dots, \delta_K)$ tuple of commuting derivations on K.
- **Kolchin polynomial**: a numerical polynomial, measuring the "growth rate" of $\bar{\delta}$.
- A multi-variate version of the same polynomial is also known.

We can abstract from the setting of fields with derivations, and consider instead a matroid with a tuple $\bar{\delta}$ of commuting (quasi)-endomorphisms. In this setting too there exists a (multi-variate) Kolchin polynomial measuring the growth rate of $\bar{\delta}$.

We can then consider the situation of an o-minimal structure K with a generic tuple $\bar{\delta}$ of commuting compatible derivations, and use the corresponding Kolchin polynomial to give a bound to the thorn rank of $(K; \bar{\delta})$.

Joint work with E. Kaplan.

A. Fornasiero (Università di Firenze)

Kolchin polynomials

Pisa 2022

Notes

The Kolchin polynomial is defined in

E. Kolchin. Differential algebra and algebraic groups. Pure and Applied Mathematics, vol. 54, Academic Press, New York- London, 1973.

The multi-variate Kolchin polynomial for a tuple of derivations and field endomorphisms is in

A.B. Levin. Multivariable difference dimension polynomials. Sovrem. Mat. Prilozh. (2004), no. 14, Algebra, 48-70.

Introduction Contents Matroids 2 Matroid endomorphisms Growth rate 4 Model theory

- X set.
- $\operatorname{c}\ell:\mathcal{P}(X)\to\mathcal{P}(X)$ operator;

such that $c\ell$ is a **closure operator**:

- $A \subseteq B \Rightarrow c\ell(A) \subseteq c\ell(B)$,
- $A \subseteq c\ell(A)$,
- $c\ell(c\ell(A)) = c\ell(A)$;

it satisfies the exchange property:

• $a \in c\ell(Bc) \setminus c\ell(B) \Rightarrow c \in c\ell(Ba)$;

it is finitary

• $a \in c\ell(B) \Rightarrow \exists B' \subseteq B \ (a \in c\ell(B') \& B' \text{ finite }).$

A. Fornasiero (Università di Firenze)

Pisa 2022

Matroids

Examples

- X set, $c\ell(A) = A$;
- X vector space, $c\ell(A) = span(A)$;
- X field, $c\ell =$ (field theoretic) algebraic closure;
- X geometric structure, $c\ell =$ (model theoretic) algebraic closure.

A. Fornasiero (Università di Firenze)

Matroids

Independent sets, basis, rank, ...

 $(X, c\ell)$ matroid, $A \subseteq X$.

- A is independent if, for all $b \in A$, $b \notin c\ell(A \setminus b)$.
- A **basis** of A is a maximal independent subset of A.
- The **rank** r(A) of A is the cardinality of a basis of A (it does not depend on the choice of the basis).
- A is independent over C if, for all $b \in A$, $b \notin c\ell(AC \setminus b)$.
- A **basis** of A over C is a subset of A maximal among sets independent over C.
- The relative rank $r(A \mid C)$ is the cardinality of a basis of A over C

$$a \in c\ell(B) \Leftrightarrow r(a \mid B) = 0$$

Matroids

Examples

X	cℓ(A)	basis of A	r(A)
set	A	А	A
vector space	span(A)	linear basis	dim(A)
field	algebraic closure	transcendence basis	transcendence degree
geometric structure	algebraic closure		

Matroid endomorphisms

Endomorphisms

 $(X, c\ell)$ matroid.

Definition

An **endomorphism** is a map $\phi: X \to X$ such that:

$$a \in c\ell(B) \Rightarrow \phi a \in c\ell(\Phi B).$$

Equivalently:

$$r(\phi A \mid \phi B) \leq r(A \mid B)$$
.

A. Fornasiero (Università di Firenze)

Kolchin polynomials

Matroid endomorphisms

Pisa 2022 6/18

Notes

Matroid endomorphisms are sometimes called **strong maps**

Examples

matroid	endomorphism	
set vector space	any map	
	field automorphism	
geometric structure	bijection preserving the structure	

Growth rate

Growth rate

Unavariate polynomial

 $(X, c\ell)$ finitary matroid.

 $\dot{\bar{\delta}} = (\delta_1, \dots, \delta_k)$ commuting endomorphisms.

 $A \subset X$ finite.

Definition

$$F_A(n) = r(\bar{\delta}^{\bar{s}}A : |\bar{s}| = n).$$

Theorem

There exists a polynomial $q = q_A \in \mathbb{Q}[t]$ of degree at most k - 1, such that, for every $n \gg 0$,

$$F_A(n) = q_A(n)$$

 $(X, c\ell)$ finitary matroid. $\dot{\bar{\delta}} = (\bar{\delta}_1, \dots, \bar{\delta}_k)$ commuting tuples of endomorphisms of length ℓ_i .

 $A \subset X$ finite.

Definition

 $F_A(\bar{n}) = r(\bar{\delta}_1^{\bar{s}_1} \cdots \bar{\delta}_k^{\bar{s}_k} A : |\bar{s}_1| = n_1, \dots, |\bar{s}_k| = n_k).$

Theorem

There exists a polynomial $q = q_A \in \mathbb{Q}[\bar{t}]$, of degree at most $\ell_i - 1$ in t_i , such that, for every $\bar{n} \gg 0$,

$$F_A(n_1,\ldots,n_k)=q_A(n_1,\ldots,n_k)$$

A. Fornasiero (Università di Firenze)

Kolchin polynomials

Pisa 2022

Growth rate

Example

Hilbert polynomial

If X is a vector space, the polynomial q_A is the (multi-variate) Hilbert polynomial.

A. Fornasiero (Università di Firenze)

Growth rate

Triangular systems

Definition

A **triangular system** is a tuple of commuting maps $\delta_i: X \to X$ such that, for every n,

$$r(\delta_n A \mid \delta_{\leq n} A \delta_{\leq n} B) \leq r(A \mid B)$$

Equivalently: $a \in c\ell(B) \Rightarrow \delta_n a \in c\ell(\delta_{\leq n} a \delta_{\leq n} B)$

 $\bar{\delta} = (\bar{\delta}_1, \dots, \bar{\delta}_k)$ commuting triangular systems of length ℓ_i .

 $A \subset X$ finite.

$$F_A(\bar{n}) = r(\bar{\delta}_1^{\bar{r}_1} \cdots \bar{\delta}_k^{\bar{r}_k} A : |\bar{r}_1| = n_1, \dots, |\bar{r}_k| = n_k).$$

Theorem

There exists a polynomial $q = q_A \in \mathbb{Q}[\bar{t}]$, of degree at most $\ell_i - 1$ in t_i , such that, for every $\bar{n}\gg 0$,

$$F_A(n_1,\ldots,n_k)=q_A(n_1,\ldots,n_k)$$

Quasi-endomorphisms

A quasi-endomorphism is a map $\delta: X \to X$ such that (id, δ) is a triangular system:

Growth rate

$$r(\delta A \mid A B \delta B) \leq r(A \mid B).$$

Equivalently: $a \in c\ell(B) \Rightarrow \delta a \in c\ell(B \delta B)$

 $\bar{\delta} = (\bar{\delta}_1, \dots, \bar{\delta}_k)$ commuting tuples of quasi-endomorphisms of length ℓ_i .

 $A \subset X$ finite.

Definition

$$G_A(\bar{n}) = r(\bar{\delta}_1^{\bar{s}_1} \cdots \bar{\delta}_k^{\bar{s}_k} A : |\bar{s}_1| \le n_1, \dots, |\bar{s}_k| \le n_k).$$

Corollary

There exists a polynomial $p_A \in \mathbb{Q}[\bar{t}]$, of degree at most ℓ_i in t_i , such that, for every $\bar{n} \gg 0$,

$$G_A(n_1,\ldots,n_k)=p_A(n_1,\ldots,n_k)$$

Growth rate

Example

Kolchin polynomial

If K is a field, any **derivation** (and any field automorphism) on K is a quasi-endomorphism. The corresponding polynomial p_A is the (multi-variate) **Kolchin polynomial**.

$$p_{A}(\bar{n}) = r(\bar{\delta}_{1}^{\bar{s}_{1}} \cdots \bar{\delta}_{k}^{\bar{s}_{k}} A : |\bar{s}_{1}| \leq n_{1}, \dots, |\bar{s}_{k}| \leq n_{k}), \qquad \bar{n} \gg 0$$

A. Fornasiero (Università di Firenze)

Kolchin polynomials

Pisa 2022

Growth rate

Invariants

 $\bar{\delta} = (\delta_1, \dots, \delta_K)$ commuting quasi-endomorphisms. $A \subset X$ finite.

$$\bar{\delta}^{\infty} A := (\bar{\delta}^{\bar{s}} A : \bar{s} \in \mathbb{N}^k)$$

The leading term of p_A (univariate polynomial) does not depend on A: if

$$\bar{\delta}^{\infty} A = \bar{\delta}^{\infty} A'$$

then p_A and $p_{A'}$ have the same leading monomial.

Lemma

Let $r^{\bar{\delta}}(A)$ be the coefficient of p_A of degree k. Then, up to a multiplicative constant, $r^{\bar{\delta}}$ is the rank of a matroid on X.

 $a \in c\ell^{\bar{\delta}}(B) \Leftrightarrow \bar{\delta}^{\infty}a$ is not $c\ell$ -independent over B

A. Fornasiero (Università di Firenze)

Pisa 2022

Model theory

Fields with generic derivations

III a structure expanding a field

 $\bar{\delta} = (\delta_1, \dots, \delta_k)$ commuting derivations.

Assume that $(\mathbb{K}, \bar{\delta})$ is "nice".

Example

- \bullet $(\mathbb{K}, \bar{\delta}) \models DCF_0^k$
- \bullet \mathbb{K} o-minimal, $\bar{\delta}$ generic tuple of commuting compatible derivations.

We can endow $(\mathbb{K}, \bar{\delta})$ with an independence relation $|^{\delta}$, and compute its foundation rank.

Model theory

Independence relation

 \mathbb{K} geometric structure (e.g., $\mathbb{K} \models ACF$ or \mathbb{K} o-minimal): the model-theoretic algebraic closure acl is a matroid.

Definition

lact is the independence relation induced by the algebraic closure:

$$A \bigcup_{B}^{\operatorname{acl}} C$$

if every $A' \subseteq A$ which is algebraically independent over B remains algebraically independent over BC. Define

$$A \underbrace{\int_{B}^{\delta} C} \Leftrightarrow \overline{\delta}^{\infty} A \underbrace{\int_{\overline{\delta}^{\infty} B}^{\operatorname{acl}} \overline{\delta}^{\infty} C}$$

Lemma

If $(\mathbb{K}, \overline{\delta})$ is "nice", then $| \delta |$ is a "strict" independence relation.

Model theory

Thorn forking

Fact (H. Adler)

If \bigcup is any strict independence relation, then $A \bigcup_{C} B$ implies $A \bigcup_{C} B$.

Corollary

The foundation rank of \(\) is greater or equal than the thorn rank.

Remark

If $(K, \bar{\delta})$ is nice, then the foundation rank of $\[\]^{\delta}$ is ω^k .

Corollary

 $(K, \bar{\delta})$ is super-rosy of rank ω^k .

A. Fornasiero (Università di Firenze)

Kolchin polynomials

Pisa 2022

Notes

We assume that $\mathbb K$ and $(\mathbb K,\bar\delta)$ have geometric elimination of imaginaries. The results are from H. Adler's PhD thesis.

Model theory

Thorn and delta rank

Question

 $^{\flat}=\mathring{}^{\delta}$?

Fact (H. Adler)

If \bigcup is a "canonical" independence relation, then $\bigcup = \bigcup$

Remark

Example

If $\mathbb{K} \models RCF$, then $\int_{-\infty}^{act} is$ canonical.

[Loveys-Peterzil] There exist $\mathbb K$ o-minimal such that $\mathbb L^{|acl}$ is not canonical.

A. Fornasiero (Università di Firenze)

olchin polynomials

Pisa 2022

Notes

J. Lovey, Y. Peterzil. Linear o-minimal structures. Israel J. of Mathematics, 81:1–30, 1993.