Topological dynamics and measures on the space of ultrafilters

Moreno Pierobon

Università di Pisa

Pisa - 29/04/2022

Moreno Pierobon (Pisa)

Topological dynamics and measures on $\beta \mathbb{N}$

Pisa - 29/04/2022 1/24

Topological dynamics and ultrafilters

Hypernatural numbers and Loeb measures

Measures on $\beta\mathbb{N}$

Section 1

Topological dynamics and ultrafilters

Moreno Pierobon (Pisa)

Topological dynamics and measures on $\beta \mathbb{N}$

Pisa - 29/04/2022 3/24

Topology of ultrafilters

The set $\beta \mathbb{N}$ of ultrafilters on \mathbb{N} is a compact Hausdorff space whose base of clopen sets is

 $\{\overline{B}:=\{p\in\beta\mathbb{N}:B\in p\}:B\subseteq\mathbb{N}\}.$

Definition

Let *X* be a topological space, $\{x_n\}_{n \in \mathbb{N}} \subset X$ and $p \in \beta \mathbb{N}$. the *p*-limit $p - \lim_n x_n$ is $y \in X$ such that, for every neighborhood *U* of *y*,

 $\{n \in \mathbb{N} : x_n \in U\} \in p.$

Theorem (Stone-Cech compactification of ℕ)

For every $f : \mathbb{N} \to K$ with K compact Hausdorff there exists a unique continuous $\beta f : \beta \mathbb{N} \to K$ such that $\beta f(n) = f(n)$ for every $n \in \mathbb{N}$.

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Algebra of ultrafilters

If $A \subseteq \mathbb{N}$ e $n \in \mathbb{N}$,

$$A - n = \{m \in \mathbb{N} : n + m \in A\}.$$

If $p \in \beta \mathbb{N}$,

$$A - p := \{n \in \mathbb{N} : A - n \in p\}.$$

Define an associative operation \oplus on $\beta \mathbb{N}$ by letting

$$A \in p \oplus q \iff A - q \in p$$

For all $p, q \in \beta \mathbb{N}$, $p \oplus q = p - \lim_{m \to \infty} (q - \lim_{m \to \infty} (n + m))$.

If $p \oplus q = q \oplus p$ for every $q \in \beta \mathbb{N}$, then $p = n \in \mathbb{N}$.

伺 ト イ ヨ ト イ ヨ ト

Idempotents

Proposition

 $(\beta \mathbb{N}, \oplus)$ is a right topological semigroup, i.e. the maps

 $\lambda_q : p \mapsto p \oplus q$

are continuous for every $q \in \beta \mathbb{N}$.

Theorem (Ellis' Lemma)

In a compact Hausdorff right topological semigroup (S, *) there are idempotents, i.e. $s \in S$ such that s * s = s.

글 🖌 🔺 글 🕨

Ideals

Definition

 $L \subseteq \beta \mathbb{N}$ is a *left ideal* if $\beta \mathbb{N} \oplus L \subseteq L$, i.e. $p \oplus q \in L$ for every $p \in \beta \mathbb{N}$ e $q \in L$.

Proposition

In $\beta \mathbb{N}$, every left ideal contains a minimal left ideal. Moreover, in $\beta \mathbb{N}$ there is a unique minimal two sided ideal, called $K(\beta \mathbb{N})$. $K(\beta \mathbb{N})$ is the union of all the minimal left ideals.

Topological dynamics

Definition

A *topological dynamics* is a pair (X, T) where X is a compact Hausdorff space and $T : X \rightarrow X$ is continuous.

If $x \in X$, the *orbit* of x is the set $\{T^n x : n \in \mathbb{N}\}$. The *dynamics generated* by x X(x) is the closure of the orbit of x.

Define, for $p \in \beta \mathbb{N}$ ultrafilter, $T^p x := p - \lim_n T^n x$. Then

$$X(x) = \{T^p x : p \in \beta \mathbb{N}\}.$$

Topological dynamics of ultrafilters

Consider now the case $(X, T) = (\beta \mathbb{N}, S)$, where $S(q) = q \oplus 1$.

If $q \in \beta \mathbb{N}$, $S^{p}q = p \oplus q$ and $\beta \mathbb{N}(q)$ is the left ideal generated by q

$$\beta \mathbb{N}(q) = \beta \mathbb{N} \oplus q = \{ p \oplus q : p \in \beta \mathbb{N} \} = \lambda_q[\beta \mathbb{N}].$$

For every (X, T) topological dynamics and for every $x \in X$, we have a commutative diagram

where $\tau_x : p \mapsto T^p x$ is continuous and surjective. Moreover,

$$T^{p}T^{q}x = T^{p\oplus q}x.$$

イロト 不得 トイヨト イヨト 二日

Recurrence

Definition

In a topological dynamics (X, T), a point $x \in X$ is *recurrent* if for every neighborhood U of x the set $R_x(U) := \{n \in \mathbb{N} : T^n x \in U\}$ is nonempty.

Proposition

For $x \in X$ are equivalent:

- x is recurrent;
- 2 exists a $p \in \beta \mathbb{N}$ such that $T^p x = x$;
 - Solution exists a $p \in \beta \mathbb{N}$ idempotent such that $T^p x = x$.

Corollary

Recurrent ultrafilters are exactly of the form $p \oplus q$ with p idempotent.

・ロト ・同ト ・ヨト ・ヨト

Uniform recurrence

Definition

In a topological dynamics (X, T) a point $x \in X$ is *uniformly recurrent* if for every neighborhood U of $x R_x(U)$ is *syndetic*, i.e. there exists a $k \in \mathbb{N}$ such that, for every $n \in \mathbb{N}$, at least one among n + 1, ..., n + k is in $R_x(U)$.

Proposition

For $x \in X$ are equivalent:

- x is uniformly recurrent;
- 2 (X(x), T) is a minimal topological dynamics;
- **③** for every $q \in \beta \mathbb{N}$ there exists $p \in \beta \mathbb{N}$ such that $T^p T^q x = x$;
- **(4)** there exists $p \in K(\beta \mathbb{N})$ idempotent such that $T^p x = x$.

Corollary

The uniformly recurrent ultrafilters are exactly the ultrafilters in $K(\beta \mathbb{N})$.

Section 2

Hypernatural numbers and Loeb measures

Moreno Pierobon (Pisa)

Topological dynamics and measures on $\beta \mathbb{N}$

Pisa - 29/04/2022 12/24

Nonstandard extensions

Nonstandard analysis associates to every object X a new object *X satisfying the *Transfer principle*:

Let $P(a_1,...,a_n)$ be a first order property of the objects $a_1,...,a_n$ with only bounded quantifications. Then $P(a_1,...,a_n)$ if and only if $P(*a_1,...,*a_n)$.

```
Assume that *r = r for every r \in \mathbb{R}.
```

Definition

Let $\xi \in \mathbb{R}$ be finite. The *standard part* st(ξ) of ξ is the unique $r \in \mathbb{R}$ infinitely close to ξ .

If $X \in Y$ for some Y, X is called *internal object*.

Moreno Pierobon (Pisa)

イロト (得) (ヨト (ヨト) ヨ

Hypernatural numbers and ultrafilters

Definition

Let $\alpha \in \mathbb{N}$. The *ultrafilter generated* by α is

 $\mathcal{U}_{\alpha} := \{ \mathsf{A} \subseteq \mathbb{N} : \alpha \in^* \mathsf{A} \}.$

If \mathbb{N} is an 2^{\aleph_0} -enlargement, the map $\mathfrak{u} :\mathbb{N} \to \beta \mathbb{N}$ defined by $\mathfrak{u}(\alpha) = \mathcal{U}_{\alpha}$ is surjective (non injective).

* \mathbb{N} is topologized by taking as a clopen base the family {* $A : A \subseteq \mathbb{N}$ }. This topology is compact non Hausdorff (if \mathfrak{u} is surjective).

Topological dynamics of $*\mathbb{N}$

Let $s : \mathbb{N} \to \mathbb{N}$ be the succesor map. Then $*s : \mathbb{N} \to \mathbb{N}$ is such that $*s(\xi) = \xi + 1$.

$$\mathcal{U}_{\xi+n} = \mathcal{U}_{\xi} \oplus n = n \oplus \mathcal{U}_{\xi}.$$

We have the following commutative diagram of continuous functions:

if (X, T) is a topological dynamics, $x \in X$, and $\alpha \in \mathbb{N}$, write $T^{\alpha}x := T^{\mathcal{U}_{\alpha}}x$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Loeb measures

Let $I \in \{B \in \mathcal{P}(\mathbb{N}) : B \text{ is finite}\}$, for instance $I = [\mu, \nu]$ for some $\mu, \nu \in \{N \setminus \mathbb{N}\}$.

Consider the nonstandard extension of the counting map

 $|\cdot|:^* \{B \in \mathcal{P}(\mathbb{N}) : B \text{ is finite}\} \rightarrow^* \mathbb{N}.$

We get a finitely additive measure on the algebra of internal subsets of I:

$$\mu_l(C) := \operatorname{st}(\frac{|C|}{|l|}).$$

Assuming saturation, countable additivity is trivial and Caratheodory's Theorem applies.

Integration

Let $I \subset^* \mathbb{N}$ hyperfinite.

Definition

If $f : I \to \mathbb{R}$, an internal map $F : I \to^* \mathbb{R}$ is a *lift* of f if μ_I -a.e. $\xi \in I$ $f(\xi) = \operatorname{st}(F(\xi))$.

Proposition

 $f: I \rightarrow \mathbb{R}$ is μ_I -measurable if and only if it has a lift.

Proposition

Let $F : I \to^* \mathbb{R}$ be internal and finite a.e. Then st(F) is μ_I -integrable and

$$\int_{I} \operatorname{st}(F) \, d\mu_{I} = \operatorname{st}(\frac{1}{|I|} \sum_{\xi \in I} F(\xi)).$$

3

< ∃⇒

Image: A matrix

Section 3

Measures on $\beta \mathbb{N}$

Moreno Pierobon (Pisa)

Topological dynamics and measures on $\beta \mathbb{N}$

Pisa - 29/04/2022 18/24

Pushforwards of Loeb measures

Let $I \subset^* \mathbb{N}$ be hyperfinite. Define a measure on the σ -algebra generated by clopen sets of $\beta \mathbb{N}$ by letting

$$m_{l}(\mathbf{Y}) := \mu_{l}(\{\xi \in^{*} \mathbb{N} : \mathcal{U}_{\xi} \in \mathbf{Y}\}).$$

Proposition

- For every $p \in \beta \mathbb{N} m_l(\{p\}) = 0$.
- If $I \subset^* \mathbb{N}$ is an interval, $m_I(\{p \in \beta \mathbb{N} : p = p \oplus p\}) = 0$.
- There exist intervals $I \subseteq \mathbb{N}$ such that $m_I(K(\beta \mathbb{N})) = 0$.

Proposition (Lindstrom)

Assuming $(2^{\aleph_0})^+$ -saturation, m_l is a Borel measure.

Proposition

The map $S : p \mapsto p \oplus 1$ is measurable and measure preserving.

Induced measures on topological dynamics

Assume $(2^{\aleph_0})^+$ -saturation. Fix *I* hyperfinite interval and consider the measure m_l on $\beta \mathbb{N}$.

Definition

Let (X, T) be a topological dynamics and let $x \in X$. Define a measure v_l^x on X by letting

$$v_l^x(V) := m_l(\{p \in \beta \mathbb{N} : T^p x \in V\}).$$

Proposition

- v_1^x is a Borel probability measure supported on X(x);
- T is v_1^x -measurable and measure preserving.

3 K K 3 K 3

Generic points

Definition

Let (X, ν, T) be a topological measure preserving system. A point $x \in X$ is *generic* for ν along a sequence of intervals $\Phi = \{I_n\}_{n \in \mathbb{N}}$ if for every continuous $f : X \to \mathbb{R}$

$$\lim_{n\to\infty}\frac{1}{|I_n|}\sum_{k\in I_n}f(T^kx)=\int_Xf\,d\nu.$$

Theorem

Let (X, v, T) be a metric measure preserving topological dynamics. Let $\Phi = \{I_n\}_{n \in \mathbb{N}}$ be a sequence of intervals. Then $x_0 \in X$ is generic for v along Φ if and only if

$$u \upharpoonright Bor(X) =
u_{l_n}^{\mathsf{x}_0} \upharpoonright Bor(X) \text{ for every } \eta \in^* \mathbb{N} \setminus \mathbb{N}.$$

Idea of the proof

Theorem (Riesz)

Let X be locally compact Hausdorff and let v_1 , v_2 be Radon measures on X. Then $v_1 = v_2$ on Borel sets if and only if for every $f \in C(X)$ $\int_X f dv_1 = \int_X f dv_2$.

Lemma

•

Let $f : X \to \mathbb{R}$ be continuous and fix $x \in X$. Define $\phi : \mathbb{N} \to \mathbb{R}$ by letting $\phi(n) := f(T^n x)$. Then $*\phi$ is a lift of $f \circ \tau_x \circ \mathfrak{u} : \xi \mapsto f(T^{\xi}x)$.

$$\int_{X} f \, d\nu_{I_{\eta}}^{x_{0}} = \int_{I_{\eta}} (f \circ \tau_{x_{0}} \circ \mathfrak{u}) \, d\mu_{I_{\eta}} = \operatorname{st}(\frac{1}{|I_{\eta}|} \sum_{\xi \in I_{\eta}} (^{*}\varphi(\xi)))$$
$$= \mathcal{U}_{\eta} - \lim_{n} \frac{1}{|I_{n}|} \sum_{k \in \Phi_{n}} f(T^{k}x_{0}) \stackrel{\circ}{=} \lim_{n \to \infty} \frac{1}{|I_{n}|} \sum_{k \in I_{n}} f(T^{k}x_{0}) (= \int_{X} f \, d\nu).$$

Motivations

Consider the Bernoulli shift $\operatorname{sh} : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, $\operatorname{sh}(B) := B - 1$. Let $A \subseteq \mathbb{N}$. The dynamics generated by A in $2^{\mathbb{N}}$ is $\{A - q : q \in \beta \mathbb{N}\}$.

Assume $p \in \beta \mathbb{N}$ and $\Phi = \{I_n\}_{n \in \mathbb{N}}$ be such that

$$d_p^{\Phi}(A) := p - \lim_n \frac{|A \cap I_n|}{|I_n|} = a > 0.$$

Let $\eta \in \mathbb{N} \setminus \mathbb{N}$ be such that $\mathcal{U}_{\eta} = p$. Then the measure $v_{l_{\eta}}^{A}$ is a measure on $2^{\mathbb{N}}$ supported on the dynamics generated by *A*. If *A* is generic,

$$U \ clopen \ \Rightarrow \ v_{l_{\eta}}^{\mathcal{A}}(U) = d_{p}^{\Phi}(\{n \in \mathbb{N} : \mathcal{A} - n \in U\}).$$

E.g. if $E = \{B \in 2^{\mathbb{N}} : 1 \in B\}$ then $v_{l_{\eta}}^{A}(E) = d_{\rho}^{\Phi}(A - 1) = d_{\rho}^{\Phi}(A) = a$.

不得 とうきょうきょうき

THANK YOU!

Moreno Pierobon (Pisa)

Topological dynamics and measures on $\beta \mathbb{N}$

Pisa - 29/04/2022 24/24