L'ordine di Rudin-Keisler e ultrafiltri Tukey-massimali su algebre di Boole

Francesco Parente

2022-02-15

Referenze

- [1] J. Brendle e F. P.

 Combinatorics of ultrafilters on Cohen and random algebras
 arXiv:2009.11530 [math.LO]
- [2] J. Brendle e F. P. Orderings of ultrafilters on Boolean algebras arXiv:2107.01447 [math.L0]
- [3] J. Brendle e F. P.

 Preservation of ultrafilters and the uniformity of the meagre ideal
 In preparazione

Definizione (Tukey [1940])

Siano U e V ultrafiltri su un'algebra di Boole $\mathbb B$. Definiamo $U \leq_\mathsf T V$ se e solo se esistono due funzioni $f\colon U \to V$ e $g\colon V \to U$ tali che per ogni $u \in U$ e $v \in V$

$$v \leq f(u) \implies g(v) \leq u$$
.

Definizione (Tukey [1940])

Siano U e V ultrafiltri su un'algebra di Boole \mathbb{B} . Definiamo $U \leq_{\mathsf{T}} V$ se e solo se esistono due funzioni $f: U \to V$ e $g: V \to U$ tali che per ogni $u \in U$ e $v \in V$

$$v \leq f(u) \implies g(v) \leq u$$
.

Denotiamo con cof(U) la minima cardinalità di un sottoinsieme cofinale di $\langle U, \geq \rangle$.

Definizione (Tukey [1940])

Siano U e V ultrafiltri su un'algebra di Boole \mathbb{B} . Definiamo $U \leq_{\mathsf{T}} V$ se e solo se esistono due funzioni $f: U \to V$ e $g: V \to U$ tali che per ogni $u \in U$ e $v \in V$

$$v \leq f(u) \implies g(v) \leq u$$
.

Denotiamo con cof(U) la minima cardinalità di un sottoinsieme cofinale di $\langle U, \geq \rangle$.

Proposizione (Schmidt [1955])

Se $U \leq_{\mathsf{T}} V$ allora $\mathsf{cof}(U) \leq \mathsf{cof}(V)$.

Definizione

Un ultrafiltro U su $\mathbb B$ è Tukey-massimale se per ogni ultrafiltro V su $\mathbb B$ si ha $V \leq_T U$.

Definizione

Un ultrafiltro U su $\mathbb B$ è Tukey-massimale se per ogni ultrafiltro V su $\mathbb B$ si ha $V \leq_{\mathsf T} U$.

Teorema (Isbell [1965])

Per ogni insieme A, esiste un ultrafiltro Tukey-massimale su A.

Definizione

Un ultrafiltro U su $\mathbb B$ è Tukey-massimale se per ogni ultrafiltro V su $\mathbb B$ si ha $V \leq_T U$.

Teorema (Isbell [1965])

Per ogni insieme A, esiste un ultrafiltro Tukey-massimale su A.

Problema (Isbell [1965])

Esistono ultrafiltri non principali su ω che non siano Tukey-massimali?

Il problema posto da Isbell ha stimolato una linea di ricerca con risultati recenti di Milovich, Todorčević, Raghavan, e molti altri.

Il problema posto da Isbell ha stimolato una linea di ricerca con risultati recenti di Milovich, Todorčević, Raghavan, e molti altri.

Teorema (Brown e Dobrinen [2016])

Se \mathbb{F} è l'algebra di Boole libera su un insieme infinito di generatori, allora ogni ultrafiltro su \mathbb{F} è Tukey-massimale.

Il problema posto da Isbell ha stimolato una linea di ricerca con risultati recenti di Milovich, Todorčević, Raghavan, e molti altri.

Teorema (Brown e Dobrinen [2016])

Se \mathbb{F} è l'algebra di Boole libera su un insieme infinito di generatori, allora ogni ultrafiltro su \mathbb{F} è Tukey-massimale.

- Se B è un'algebra di Boole infinita tale che ogni ultrafiltro su B è Tukey-massimale, allora B è libera?
- Quali algebre ammettono ultrafiltri non Tukey-massimali?

Algebre Cohen e random

Dato un cardinale κ , sia $\mathcal{B}(^{\kappa}2)$ la σ -algebra generata dai sottoinsiemi clopen dello spazio prodotto $^{\kappa}2$. Definiamo

$$\mathbb{C}_{\kappa} = \mathcal{B}(^{\kappa}2)/\mathcal{M}(\kappa)$$
 e $\mathbb{B}_{\kappa} = \mathcal{B}(^{\kappa}2)/\mathcal{N}(\kappa)$

i quozienti modulo l'ideale degli insiemi magri e l'ideale degli insiemi nulli in $^{\kappa}2$, rispettivamente.

Algebre Cohen e random

Dato un cardinale κ , sia $\mathcal{B}(^{\kappa}2)$ la σ -algebra generata dai sottoinsiemi clopen dello spazio prodotto $^{\kappa}2$. Definiamo

$$\mathbb{C}_{\kappa} = \mathcal{B}(^{\kappa}2)/\mathcal{M}(\kappa)$$
 e $\mathbb{B}_{\kappa} = \mathcal{B}(^{\kappa}2)/\mathcal{N}(\kappa)$

i quozienti modulo l'ideale degli insiemi magri e l'ideale degli insiemi nulli in $^{\kappa}2$, rispettivamente.

Teorema (Brendle e P.)

Se κ soddisfa $\kappa^{\aleph_0} = \kappa$, allora tutti gli ultrafiltri su \mathbb{C}_{κ} e tutti gli ultrafiltri su \mathbb{B}_{κ} sono Tukey-massimali.

Algebre Cohen e random

Dato un cardinale κ , sia $\mathcal{B}(^{\kappa}2)$ la σ -algebra generata dai sottoinsiemi clopen dello spazio prodotto $^{\kappa}2$. Definiamo

$$\mathbb{C}_{\kappa} = \mathcal{B}(^{\kappa}2)/\mathcal{M}(\kappa)$$
 e $\mathbb{B}_{\kappa} = \mathcal{B}(^{\kappa}2)/\mathcal{N}(\kappa)$

i quozienti modulo l'ideale degli insiemi magri e l'ideale degli insiemi nulli in $^{\kappa}2$, rispettivamente.

Teorema (Brendle e P.)

Se κ soddisfa $\kappa^{\aleph_0} = \kappa$, allora tutti gli ultrafiltri su \mathbb{C}_{κ} e tutti gli ultrafiltri su \mathbb{B}_{κ} sono Tukey-massimali.

Idea della dimostrazione.

Usare il fatto che gli ideali $\mathcal{M}(\kappa)$ e $\mathcal{N}(\kappa)$ sono "index invariant", una proprietà isolata da Kunen [1984].

Ultrafilter number

Definizione

Sia ${\mathbb B}$ un'algebra di Boole infinita. Definiamo

 $\mathfrak{u}(\mathbb{B})=\min\{\operatorname{cof}(U)\mid U\ \text{\`e un ultrafiltro non principale su }\mathbb{B}\}.$

Per semplicità di notazione, sia $\mathfrak{u} = \mathfrak{u}(\mathcal{P}(\omega))$.

Ultrafilter number

Definizione

Sia ${\mathbb B}$ un'algebra di Boole infinita. Definiamo

$$\mathfrak{u}(\mathbb{B}) = \min\{\operatorname{cof}(U) \mid U \text{ è un ultrafiltro non principale su } \mathbb{B}\}.$$

Per semplicità di notazione, sia $\mathfrak{u} = \mathfrak{u}(\mathcal{P}(\omega))$.

La motivazione per considerare questo cardinale nel contesto dell'ordine di Tukey è data dalla seguente osservazione.

Osservazione

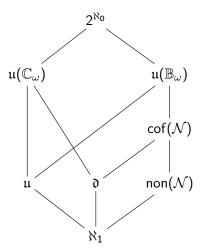
Sia $\mathbb B$ un'algebra di Boole infinita. Se $\mathfrak u(\mathbb B)<|\mathbb B|$, allora esiste un ultrafiltro non principale su $\mathbb B$ che non è Tukey-massimale.

L'ultrafilter number di \mathbb{C}_{ω} e \mathbb{B}_{ω}

L'ultrafilter number di \mathbb{C}_{ω} e \mathbb{B}_{ω}

Teorema

Valgono le disuguaglianze del seguente diagramma.



Teorema (Brendle e P.) È coerente che $\mathfrak{u}(\mathbb{C}_{\omega}) < \mathsf{non}(\mathcal{N})$.

Teorema (Brendle e P.) È coerente che $\mathfrak{u}(\mathbb{C}_{\omega}) < \mathsf{non}(\mathcal{N})$.

Teorema (Brendle e P.) È coerente che $\mathfrak{u}(\mathbb{B}_{\omega}) < 2^{\aleph_0}$.

Teorema (Brendle e P.)

È coerente che $\mathfrak{u}(\mathbb{C}_{\omega})< \mathsf{non}(\mathcal{N})$.

Teorema (Brendle e P.)

È coerente che $\mathfrak{u}(\mathbb{B}_{\omega}) < 2^{\aleph_0}$.

Domande

ightharpoonup È coerente che $\mathfrak{u}(\mathbb{C}_{\omega})< \mathrm{non}(\mathcal{M})$?

Teorema (Brendle e P.)

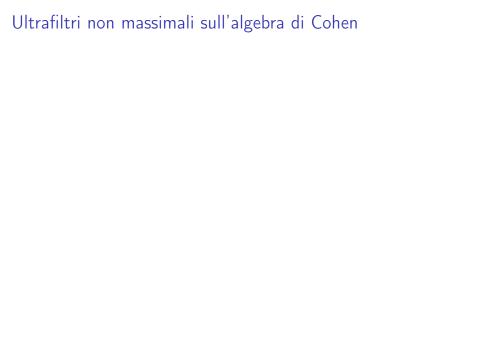
È coerente che $\mathfrak{u}(\mathbb{C}_{\omega}) < \text{non}(\mathcal{N})$.

Teorema (Brendle e P.)

È coerente che $\mathfrak{u}(\mathbb{B}_{\omega}) < 2^{\aleph_0}$.

Domande

- ightharpoonup È coerente che $\mathfrak{u}(\mathbb{C}_{\omega})< \mathsf{non}(\mathcal{M})$?
- ightharpoonup È coerente che $\mathfrak{u}(\mathbb{B}_{\omega}) < \mathfrak{u}(\mathbb{C}_{\omega})$?



Ultrafiltri non massimali sull'algebra di Cohen

Teorema (Brendle e P.)

Supponiamo $\mathfrak{d}=2^{\aleph_0}$. Sia $\mathbb B$ un'algebra di Boole c.c.c. completa di cardinalità 2^{\aleph_0} . Se $\mathbb B$ ha una sottoalgebra densa di cardinalità $<2^{\aleph_0}$, allora esiste un ultrafiltro non principale su $\mathbb B$ che non è Tukey-massimale.

Ultrafiltri non massimali sull'algebra di Cohen

Teorema (Brendle e P.)

Supponiamo $\mathfrak{d}=2^{\aleph_0}$. Sia $\mathbb B$ un'algebra di Boole c.c.c. completa di cardinalità 2^{\aleph_0} . Se $\mathbb B$ ha una sottoalgebra densa di cardinalità $<2^{\aleph_0}$, allora esiste un ultrafiltro non principale su $\mathbb B$ che non è Tukey-massimale.

Osservazione

In particolare, assumendo $\mathfrak{d}=2^{\aleph_0}$, il teorema fornisce un ultrafiltro non massimale su \mathbb{C}_ω . Tuttavia, il risultato non si applica a \mathbb{B}_ω , poiché l'ipotesi $\mathfrak{d}=2^{\aleph_0}$ implica che ogni sottoalgebra densa di \mathbb{B}_ω debba avere cardinalità 2^{\aleph_0} .

Ultrafiltri non massimali sull'algebra random

Definizione (Jensen [1972])

Sia \Diamond il seguente principio: esiste una successione $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ tale che $S_{\alpha} \subseteq \alpha$ e, per ogni $X \subseteq \omega_1$, l'insieme $\{\alpha < \omega_1 \mid X \cap \alpha = S_{\alpha}\}$ è stazionario.

Ultrafiltri non massimali sull'algebra random

Definizione (Jensen [1972])

Sia \Diamond il seguente principio: esiste una successione $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ tale che $S_{\alpha} \subseteq \alpha$ e, per ogni $X \subseteq \omega_1$, l'insieme $\{\alpha < \omega_1 \mid X \cap \alpha = S_{\alpha}\}$ è stazionario.

Teorema (Brendle e P.)

 \Diamond implica l'esistenza di un ultrafiltro non Tukey-massimale su \mathbb{B}_{ω} .

Ordine di Rudin-Keisler

Definizione

Siano U e V ultrafiltri su un insieme A. Definiamo $U \leq_{\mathsf{RK}} V$ se e solo se esiste una funzione $f: A \to A$ tale che per ogni $X \subseteq A$

$$X \in U \iff f^{-1}[X] \in V.$$

Ordine di Rudin-Keisler

Definizione

Siano U e V ultrafiltri su un insieme A. Definiamo $U \leq_{\mathsf{RK}} V$ se e solo se esiste una funzione $f: A \to A$ tale che per ogni $X \subseteq A$

$$X \in U \iff f^{-1}[X] \in V.$$

Osserviamo che $U \leq_{\mathsf{RK}} V$ implica $U \leq_{\mathsf{T}} V$.

Ordine di Rudin-Keisler

Definizione

Siano U e V ultrafiltri su un insieme A. Definiamo $U \leq_{\mathsf{RK}} V$ se e solo se esiste una funzione $f: A \to A$ tale che per ogni $X \subseteq A$

$$X \in U \iff f^{-1}[X] \in V.$$

Osserviamo che $U \leq_{\mathsf{RK}} V$ implica $U \leq_{\mathsf{T}} V$.

Proposizione

Le seguenti condizioni sono equivalenti:

- 1. $U \leq_{\mathsf{RK}} V$;
- 2. esistono $Y \in V$ e un omomorfismo completo $h \colon \mathcal{P}(A) \to \mathcal{P}(Y)$ tali che $U = h^{-1}[V]$;
- 3. per ogni struttura \mathfrak{M} , esiste un'immersione elementare $\mathfrak{M}^A/U \to \mathfrak{M}^A/V$.

Una formulazione algebrica

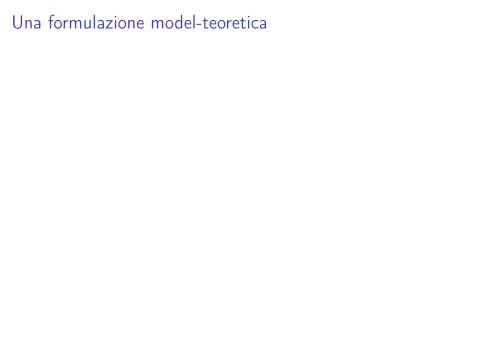
Dato $b \in \mathbb{B}$, denotiamo $\mathbb{B} \upharpoonright b = \{a \in \mathbb{B} \mid a \leq b\}$.

Una formulazione algebrica

Dato $b \in \mathbb{B}$, denotiamo $\mathbb{B} \upharpoonright b = \{a \in \mathbb{B} \mid a \leq b\}$.

Definizione (Murakami [1999])

Siano U e V ultrafiltri su un'algebra di Boole completa \mathbb{B} . Definiamo $U \subseteq_{\mathsf{M}} V$ se e solo se esistono $v \in V$ e un omomorfismo completo $h \colon \mathbb{B} \to \mathbb{B} \upharpoonright v$ tali che $U = h^{-1}[V]$.



Definizione (Jipsen, Pinus, e Rose [2001])

Siano U e V ultrafiltri su un'algebra di Boole completa \mathbb{B} . Definiamo $U \leq_{\mathsf{JPR}} V$ se e solo se esistono una funzione $g: \mathsf{Part}(\mathbb{B}) \to \mathsf{Part}(\mathbb{B})$ e, per ogni $A \in \mathsf{Part}(\mathbb{B})$, una funzione $f_A \colon g(A) \to A$ tali che:

Definizione (Jipsen, Pinus, e Rose [2001])

Siano U e V ultrafiltri su un'algebra di Boole completa \mathbb{B} . Definiamo $U \leq_{\mathsf{JPR}} V$ se e solo se esistono una funzione $g \colon \mathsf{Part}(\mathbb{B}) \to \mathsf{Part}(\mathbb{B})$ e, per ogni $A \in \mathsf{Part}(\mathbb{B})$, una funzione $f_A \colon g(A) \to A$ tali che:

1. per ogni $A \in \mathsf{Part}(\mathbb{B})$ e ogni $X \subseteq A$

$$\bigvee X \in U \iff \bigvee f_A^{-1}[X] \in V;$$

Definizione (Jipsen, Pinus, e Rose [2001])

Siano U e V ultrafiltri su un'algebra di Boole completa \mathbb{B} . Definiamo $U \leq_{\mathsf{JPR}} V$ se e solo se esistono una funzione

 $g: \mathsf{Part}(\mathbb{B}) \to \mathsf{Part}(\mathbb{B})$ e, per ogni $A \in \mathsf{Part}(\mathbb{B})$, una funzione $f_A \colon g(A) \to A$ tali che:

1. per ogni $A \in \text{Part}(\mathbb{B})$ e ogni $X \subseteq A$

$$\bigvee X\in U\iff\bigvee f_A^{-1}[X]\in V;$$

2. se A' è più fine di A, allora il valore booleano $\llbracket f_{A'} \leq f_A \rrbracket^{\mathbb{B}} \in V$.

Definizione (Jipsen, Pinus, e Rose [2001])

Siano U e V ultrafiltri su un'algebra di Boole completa \mathbb{B} . Definiamo $U \leq_{\mathsf{JPR}} V$ se e solo se esistono una funzione $g \colon \mathsf{Part}(\mathbb{B}) \to \mathsf{Part}(\mathbb{B})$ e, per ogni $A \in \mathsf{Part}(\mathbb{B})$, una funzione $f_A \colon g(A) \to A$ tali che:

1. per ogni $A \in \text{Part}(\mathbb{B})$ e ogni $X \subseteq A$

$$\bigvee X \in U \iff \bigvee f_A^{-1}[X] \in V;$$

2. se A' è più fine di A, allora il valore booleano $[f_{A'} \leq f_A]^{\mathbb{B}} \in V$.

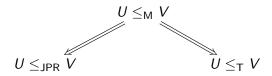
Teorema (Jipsen, Pinus, and Rose [2001])

 $U \leq_{\mathsf{JPR}} V$ se e solo se per ogni struttura \mathfrak{M} esiste un'immersione elementare di ultrapotenze booleane $\mathfrak{M}^{[\mathbb{B}]}/U \to \mathfrak{M}^{[\mathbb{B}]}/V$.

La relazione con l'ordine di Tukey

Proposizione

Se U e V sono ultrafiltri su un'algebra di Boole completa B, allora



Ultrafiltri JPR-incomparabili

Teorema (Brendle e P.)

Sia $\mathbb B$ un algebra di Boole completa infinita. Se esiste un'anticatena A tale che $2^{|A|}=|\mathbb B|$, allora esistono due ultrafiltri U e V su $\mathbb B$ tali che $U\equiv_\mathsf T V$ e $U\not\leq_\mathsf{JPR} V$ e $V\not\leq_\mathsf{JPR} U$.

Ultrafiltri JPR-incomparabili

Teorema (Brendle e P.)

Sia $\mathbb B$ un algebra di Boole completa infinita. Se esiste un'anticatena A tale che $2^{|A|}=|\mathbb B|$, allora esistono due ultrafiltri U e V su $\mathbb B$ tali che $U\equiv_\mathsf T V$ e $U\not\leq_\mathsf{JPR} V$ e $V\not\leq_\mathsf{JPR} U$.

Idea della dimostrazione.

Costruire U e V per ricorsione transfinita di lunghezza $|\mathbb{B}|$, usando la tecnica di insiemi indipendenti di Kunen [1972].

Teorema (Brendle e P.)

Se $2^{\aleph_0} = \aleph_1$, allora esistono due ultrafiltri U and V su \mathbb{C}_{ω} tali che $U \equiv_{\mathsf{JPR}} V$ e $U \nleq_{\mathsf{T}} V$ e $V \nleq_{\mathsf{T}} U$.

Teorema (Brendle e P.)

Se $2^{\aleph_0} = \aleph_1$, allora esistono due ultrafiltri U and V su \mathbb{C}_{ω} tali che $U \equiv_{\mathsf{JPR}} V$ e $U \nleq_{\mathsf{T}} V$ e $V \nleq_{\mathsf{T}} U$.

Idea della dimostrazione.

Vogliamo costruire U e V per ricorsione transfinita di lunghezza \aleph_1 . Tuttavia, a priori abbiamo 2^{\aleph_1} riduzioni di Tukey da gestire!

Teorema (Brendle e P.)

Se $2^{\aleph_0} = \aleph_1$, allora esistono due ultrafiltri U and V su \mathbb{C}_{ω} tali che $U \equiv_{\mathsf{JPR}} V$ e $U \nleq_{\mathsf{T}} V$ e $V \nleq_{\mathsf{T}} U$.

Idea della dimostrazione.

Vogliamo costruire U e V per ricorsione transfinita di lunghezza \aleph_1 . Tuttavia, a priori abbiamo 2^{\aleph_1} riduzioni di Tukey da gestire! Soluzione:

 assicurarsi che U e V siano P-ultrafiltri coerenti, una proprietà introdotta da Starý [2015];

Teorema (Brendle e P.)

Se $2^{\aleph_0} = \aleph_1$, allora esistono due ultrafiltri U and V su \mathbb{C}_{ω} tali che $U \equiv_{\mathsf{JPR}} V$ e $U \nleq_{\mathsf{T}} V$ e $V \nleq_{\mathsf{T}} U$.

Idea della dimostrazione.

Vogliamo costruire U e V per ricorsione transfinita di lunghezza \aleph_1 . Tuttavia, a priori abbiamo 2^{\aleph_1} riduzioni di Tukey da gestire! Soluzione:

- assicurarsi che U e V siano P-ultrafiltri coerenti, una proprietà introdotta da Starý [2015];
- ▶ generalizzando Dobrinen and Todorčević [2011], dimostrare che, se U è un P-ultrafiltro coerente su \mathbb{C}_{ω} , allora ogni potenziale riduzione di Tukey $V \to U$ è determinata da informazione finita, in particolare ne esistono al più 2^{\aleph_0} ;

Teorema (Brendle e P.)

Se $2^{\aleph_0} = \aleph_1$, allora esistono due ultrafiltri U and V su \mathbb{C}_{ω} tali che $U \equiv_{\mathsf{JPR}} V$ e $U \nleq_{\mathsf{T}} V$ e $V \nleq_{\mathsf{T}} U$.

Idea della dimostrazione.

Vogliamo costruire U e V per ricorsione transfinita di lunghezza \aleph_1 . Tuttavia, a priori abbiamo 2^{\aleph_1} riduzioni di Tukey da gestire! Soluzione:

- assicurarsi che U e V siano P-ultrafiltri coerenti, una proprietà introdotta da Starý [2015];
- ▶ generalizzando Dobrinen and Todorčević [2011], dimostrare che, se U è un P-ultrafiltro coerente su \mathbb{C}_{ω} , allora ogni potenziale riduzione di Tukey $V \to U$ è determinata da informazione finita, in particolare ne esistono al più 2^{\aleph_0} ;
- procedere con cautela per preservare la JPR-equivalenza ad ogni passo induttivo.

Sommario

- Ordine di Tukey;
- L'esistenza di ultrafiltri non massimali;
- Due formulazioni dell'ordine di Rudin-Keisler.