Focus on:
All days
4 Dec 2025
5 Dec 2025
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Ciudad_Juarez
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Rome
English (United Kingdom)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Italiano (Italia)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Čeština (Česko)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
December workshop in Number Theory
from
Thursday, 4 December 2025 (13:00)
to
Friday, 5 December 2025 (16:00)
Monday, 1 December 2025
Tuesday, 2 December 2025
Wednesday, 3 December 2025
Thursday, 4 December 2025
14:00
Exceptional loci in Lang-Vojta Conjectures
-
Amos Turchet
(
Università Roma Tre
)
Exceptional loci in Lang-Vojta Conjectures
Amos Turchet
(
Università Roma Tre
)
14:00 - 14:45
Room: Saletta Riunioni
The distribution of integral points over number fields in algebraic varieties is conjecturally described by far reaching conjectures of Lang and Vojta. In the case of surfaces of log general type, it predicts the existence of a proper closed subset, the “exceptional set”, that contains all but finitely many integral points, on every finite extension of the ground field. In this talk we will discuss the exceptional set for the complement in the projective plane of a curve with at least three components. We will completely describe the “algebraic" exceptional set, how it relates to so-called hyperbitangent curves, the implication for (Brody)-hyperbolicity and, time permitting, generalization to arbitrary surfaces. This is joint work with Lucia Caporaso.
15:00
Minoration of the Weil height over p-adic Lie extensions
-
Lea Terracini
(
Università di Torino
)
Minoration of the Weil height over p-adic Lie extensions
Lea Terracini
(
Università di Torino
)
15:00 - 15:45
Room: Saletta Riunioni
I will discuss recent progress on the Bogomolov property for algebraic extensions cut out by p-adic Galois representations, with no modularity assumptions. Under a big local image condition on inertia at p, Sen’s comparison between ramification and Lie filtrations allows to produce a uniform p-adic metric inequality, which in turn leads to a global lower bound for the Weil height. If time allows, I will illustrate the criterion through both modular and non-modular examples. This is joint work with Andrea Conti.
16:00
Galois groups giving counterexamples to the Hasse principle for divisibility in elliptic curves
-
Laura Paladino
(
Università della Calabria
)
Galois groups giving counterexamples to the Hasse principle for divisibility in elliptic curves
Laura Paladino
(
Università della Calabria
)
16:00 - 16:45
Room: Saletta Riunioni
Let $p$ be a prime number and let $n$ be a positive integer. Let $\mathcal E$ be an elliptic curve defined over $k$. The validity or the failing of the Hasse principle for divisibility in ${\mathcal E}/k$ depends on the Galois group $\textrm{Gal}(k({\mathcal E}[p^n])/k)$. For which kind of these groups does the principle hold? For which of them can we find a counterexample? The answers to these questions were known for $n = 1, 2$, but for $n \geq 3$ they were still open. We now present best possible answers for every $n$, by showing conditions on the generators of $\textrm{Gal}(k({\mathcal E}[p^n])/k)$, which are sufficient and necessary for the validity of the local-global principle. This is a joint work with Jessica Alessandr\`i (Max Planck Institute Bonn).
Friday, 5 December 2025
11:00
Drinfeld quasi-modular forms of higher level
-
Maria Valentino
(
Università della Calabria
)
Drinfeld quasi-modular forms of higher level
Maria Valentino
(
Università della Calabria
)
11:00 - 11:45
Room: Saletta Riunioni
Quasi-modular forms, first introduced by Kaneko and Zagier in the 90's, arise as a natural extension of classical modular forms and exhibit remarkable closure properties under differentiation. In this talk, we will explore their function field counterpart. Specifically, we will focus on the structure of the vector space of Drinfeld quasi-modular forms for congruence subgroups providing two different representations: one as polynomials in the false Eisenstein series and the other, whenever possible, as sums of hyperderivatives of Drinfeld modular forms. Finally, we will present the double-slash operator, which allows us to provide a well-posed definition for Hecke operators on Drinfeld quasi-modular forms, and a characterization of Hecke eigenforms.
12:00
Singular intersections of curves and subgroups in tori and in abelian varieties
-
Laura Capuano
(
Università Roma Tre
)
Singular intersections of curves and subgroups in tori and in abelian varieties
Laura Capuano
(
Università Roma Tre
)
12:00 - 12:45
Room: Saletta Riunioni
It can be proved that, if X is an irreducible curve in a torus defined over a number field, then the set of all the points of X lying in a proper algebraic group is always infinite, even under the hypothesis that X is not contained in a proper algebraic group. In a joint work with F. Ballini and N. Ottolini we prove that, if one looks at the multiplicities of intersections, the set of points where this intersection is singular is a finite set. This statement, which fits in the general framework of problems of Unlikely Intersections, generalizes a previous result of Marché and Maurin for curves in a torus of dimension 2.
14:00
On the disk of convergence of algebraic power series
-
Francesco Veneziano
(
Università di Genova
)
On the disk of convergence of algebraic power series
Francesco Veneziano
(
Università di Genova
)
14:00 - 14:45
Room: Saletta Riunioni
In a recent work with U. Zannier we considered the disk of convergence of a power series $s(x)$ representing an algebraic function of x and specifically the relation between this disk and the branch points of the $x$-coordinate on the corresponding algebraic curve. We focus especially on the $p$-adic case, answering some questions of basic nature, seemingly absent from the existing literature. To illustrate the issues, recall that in the complex case the open disk of convergence cannot contain all the branch points of $x$, except for the trivial case of a rational function. In the p-adic case, we show that the analogous assertion is not true in complete generality; but we also confirm it in a number of cases, for instance under the assumption that p is not smaller than the degree of $s(x)$ over the field of rational functions of $x$.