20–24 Jun 2022
Dipartimento di Matematica Università di Pisa
Europe/Rome timezone

Optimal transport and quantitative geometric inequalities

23 Jun 2022, 15:50
50m
Aula magna (Dipartimento di Matematica Università di Pisa)

Aula magna

Dipartimento di Matematica Università di Pisa

Largo Bruno Pontecorvo, 5, 56127 Pisa PI

Speaker

Andrea Mondino (University of Oxford)

Description

The goal of the talk is to discuss a quantitative version of the Levy-Gromov isoperimetric inequality (joint with Cavalletti and Maggi) as well as a quantitative form of Obata’s rigidity theorem (joint with Cavalletti and Semola). Given a closed Riemannian manifold with strictly positive Ricci tensor, one estimates the measure of the symmetric difference of a set with a metric ball with the deficit in the Levy-Gromov inequality. The results are obtained via a quantitative analysis based on the localisation method via $L^1$-optimal transport.

Presentation materials