20–24 Jun 2022
Dipartimento di Matematica Università di Pisa
Europe/Rome timezone

Estimates on the Cheeger constant

20 Jun 2022, 17:00
50m
Aula magna (Dipartimento di Matematica Università di Pisa)

Aula magna

Dipartimento di Matematica Università di Pisa

Largo Bruno Pontecorvo, 5, 56127 Pisa PI

Speaker

Giorgio Saracco (Università di Trento)

Description

Given a set $\Omega\subset \mathbb{R}^N$, the Cheeger constant is a purely geometrical quantity defined as the infimum
$$ h(\Omega):= \inf \left\{\,\frac{P(E)}{|E|}\,:\, E\subset \Omega,\, |E|>0 \,\right\}. $$ Despite seeming unassuming, it pops up in many contexts that apparently have nothing in common. To name a few, under some mild regularity assumptions on $\Omega$: bounds on the first Dirichlet eigenvalue of the $p$-Laplacian; existence of sets in $\Omega$ or of graphs over $\Omega$ with prescribed curvature; threshold of vertical load that a flat membrane can sustain before breaking; image reconstruction and denoising. The constant of the unit square has even been a tool in a elementary proof of the Prime Number Theorem! Given the numerous applications, it is important being able to explicitly compute the constant. This is in general a hard task: a telltale sign is that we do not know the exact value of the constant of the unit cube in dimension $N\ge 3$. The computation is (theoretically) feasible for a large class of Jordan domains in the plane [LNS] or in very special cases in general dimension. If unable to compute the constant, it would be at least desirable to obtain bounds on it: in [LNS] we proved bounds via interior approximations of the set for $2$d domains on which, at least on a theoretical level, the constant can be found by solving an algebraic equation; in [JS] a quantitative inequality for the Cheeger constant has been proved in terms of the Riesz asymmetry; in [BPS] bounds of the constant for cylindrical domains $\Omega=\omega\times[0,L]$ have been shown in terms of the constant of the cross-section $\omega$. [BPS] G. Buttazzo, A. Pratelli, and G. Saracco. Upper and lower bounds on the first Dirichlet eigenvalue of the $p$-Laplacian in cylindrical domains, and existence of minimizers of a shape optimization problem. Forthcoming.

[JS] V. Julin and G. Saracco. “Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants.” In: Ann. Fenn. Math. 46.2 (2021), pp. 1071–1087.

[LNS] G. P. Leonardi, R. Neumayer, and G. Saracco. “The Cheeger constant of a Jordan domain without necks.” In: Calc. Var. Partial Differential Equations 56.6 (2017), p. 164.

Primary author

Giorgio Saracco (Università di Trento)

Presentation materials