20–21 Jan 2025
Aula Magna "Fratelli Pontecorvo", Building E, Polo Fibonacci. Pisa
Europe/Rome timezone

Fractional Laplacian and ADMM for glyph extraction

21 Jan 2025, 15:20
20m
Building E (Aula Magna "Fratelli Pontecorvo", Building E, Polo Fibonacci. Pisa)

Building E

Aula Magna "Fratelli Pontecorvo", Building E, Polo Fibonacci. Pisa

Largo Bruno Pontecorvo 3, 56127 Pisa (Building E)

Speaker

Mr Andrea Azzarelli (University of Cagliari)

Description

In archaeology it is a common task to extract incisions or glyphs from a surface. This procedure is usually done manually and, therefore, it is prone to errors and it can be extremely time consuming. In this talk we present a variational model to automatically extract these incisions from a smooth surface.

We model this problem in the following way. Let $\mathbf{x}\in\mathbb{R}^n$ be a vector containing a sampling of the archaeological surface, we wish to find two vectors $\mathbf{x}_s^*$ and $\mathbf{x}_g^*$ such that $\mathbf{x}=\mathbf{x}_s^*+\mathbf{x}_g^*$, where $\mathbf{x}_s^*$ is smooth and contains the background and $\mathbf{x}_g^*$ is sparse and contains the glyph. To this aim we consider the model
$$ \begin{split} \left(\mathbf{x}_s^*,\mathbf{x}_g^*\right)=&\arg\min_{\mathbf{x}_s,\mathbf{x}_g\in\mathbb{R}^{n\times n}} \frac{1}{2}\left\|L^\alpha\textbf{x}_s\right\|_2^2+\mu\left\|\mathbf{x}_g\right\|_1,\\&\quad \mbox{s.t. }\mathbf{x}_s+\mathbf{x}_g=\mathbf{x}, \end{split} $$ where $\mu>0$, $\alpha\in[1,2]$, $$\|\mathbf{x}\|_p^p=\sum_{i=1}^{n}|\mathbf{x}_i|^p,$$ and $L\in\mathbb{R}^{n\times n}$ denotes the Laplacian operator. To perform the minimization,
we employ the Alternating Direction Multiplier Method (ADMM). We provide a procedure to generate
realistic synthetic data and we show the performances of the proposed method on this kind of data.

  1. S. Boyd, N. Parikh, E.Chu, B. Peleato, J. Eckstein, et al, {Distributed optimization and statistical learning via the alternating direction method of multipliers}, Foundations and Trends® in Machine learning 3 (2011) 1–122.
  2. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bulletin des sciences mathématiques 136 (2012) 521–573.
  3. A. Gholami, S. Gazzola, Automatic balancing parameter selection for Tikhonov-TV regularization, BIT Numerical Mathematics 62 (2022) 1873–1898.

Primary authors

Prof. Alessandro Buccini (University of Cagliari) Mr Andrea Azzarelli (University of Cagliari)

Presentation materials

There are no materials yet.